Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474459

RESUMEN

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Asunto(s)
Artrópodos , Aceites Volátiles , Piper nigrum , Piper , Sesquiterpenos , Animales , Aceites Volátiles/química , Acetilcolinesterasa , Cromatografía de Gases y Espectrometría de Masas , Piper/química , Aceites de Plantas/química
2.
Molecules ; 27(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080231

RESUMEN

The Myrtaceae family is one of the most representative in the Amazon. Several species have high added-value pharmacological potential. In order to contribute to the knowledge of the aromatic profile of Myrtaceae species from the Amazon, the present study presents the first report on the productivity, chemical composition, and antioxidant profile of the essential oil (EO) of Myrcia paivae. Dry leaves of the species were submitted to hydrodistillation to obtain their EO. The EO performance was calculated on a moisture-free basis and the analysis of the chemical profile was carried out by GC/MS. The determination of the antioxidant capacity was assessed by means of the antioxidant capacity equivalent to the inhibition Trolox of the ABTS•+ and DPPH• radicals. The results indicate that EO performance was equivalent to 1.69%. As for the chemical composition, hydrocarbon monoterpenes were predominant in the sample (>77%); terpinolene (14.70%), α-phellandrene (14.69%), γ-terpinene (9.64%), sylvestrene (7.62%), α-thujene (6.46%), and α-pinene (6.39%) were the constituents with higher content. Regarding the antioxidant capacity, the results show that the EO presented good results in the inhibition of ABTS•+ (0.886 ± 0.226 mM L−1) and DPPH• (2.90 ± 0.083 mM L−1), which can be attributed to the high monoterpene content in the sample.


Asunto(s)
Myrtaceae , Aceites Volátiles , Antioxidantes/química , Monoterpenos/análisis , Myrtaceae/química , Aceites Volátiles/química , Extractos Vegetales/química , Hojas de la Planta/química
3.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139777

RESUMEN

The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical composition of the EO of D. echinophora was characterized by ß-phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to 69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show that the compounds are able to bind to the binding pocket through non-covalent interactions with the residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of the EOs of these species may also indicate a potential biological activity.

4.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889245

RESUMEN

Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.


Asunto(s)
Aceites Volátiles , Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Brasil , Aceites Volátiles/química , Aceites Volátiles/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-34950215

RESUMEN

Medicinal and aromatic plants present important active compounds that have potential for use in food, pharmaceutical, and agriculture industries. In this sense, the present work aimed to conduct a literature review on the potential applications of essential oils from Lamiaceae species. Antioxidant, anti-inflammatory, and antimicrobial activities were evaluated. The importance of this study is demonstrated as a way to theoretically provide information on the use of different plants belonging to the Lamiaceae family, especially with regard to the physical, chemical, and biological properties of its essential oils.

6.
Molecules ; 26(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885839

RESUMEN

The essential oils of three specimens of Myrcia multiflora (A, B and C) and Eugenia florida were extracted by hydrodistillation, and the chemical compositions from the essential oils were identified by gas chromatography and flame ionization detection (CG/MS and CG-FID). The fungicide potential of the EOs against five fungicide yeasts was assessed: Candida albicans INCQS-40175, C. tropicalis ATCC 6258, C. famata ATCC 62894, C. krusei ATCC 13803 and C. auris IEC-01. The essential oil of the specimen Myrcia multiflora (A) was characterized by the major compounds: α-bulnesene (26.79%), pogostol (21.27%) and δ-amorphene (6.76%). The essential oil of the specimen M. multiflora (B) was rich in (E)-nerolidol (44.4%), (E)-γ-bisabolene (10.64%) and (E,E)-α-farnesene (8.19%), while (E)-nerolidol (92.21%) was the majority of the specimen M. multiflora (C). The sesquiterpenes seline-3,11-dien-6-α-ol (12.93%), eremoligenol (11%) and γ-elemene (10.70%) characterized the chemical profile of the EOs of E. florida. The fungal species were sensitive to the essential oil of M. multiflora (B) (9-11 mm), and the lowest inhibitory concentration (0.07%) was observed in the essential oil of M. multiflora (A) against the yeasts of C. famata. Fungicidal action was observed in the essential oils of M. multiflora (A) against C. famata, with an MIC of 0.78 µL/mL and 3.12 µL/mL; C. albicans, with an MFC of 50 µL/mL and M. multiflora (C) against C. albicans; and C. krusei, with a MFC of 50 µL/mL.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Eugenia/química , Myrtaceae/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Análisis de Componente Principal , Levaduras/efectos de los fármacos
7.
Molecules ; 26(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641394

RESUMEN

Eugenia florida DC. belongs to the Myrtaceae family, which is present in almost all of Brazil. This species is popularly known as pitanga-preta or guamirim and is used in folk medicine to treat gastrointestinal problems. In this study, two specimens of Eugenia florida (Efl) were collected in different areas of the same region. Specimen A (EflA) was collected in an area of secondary forest (capoeira), while specimen B (EflB) was collected in a floodplain area. The essential oils (EOs) were extracted from both specimens of Eugenia florida by means of hydrodistillation. Gas chromatography coupled to mass spectrometry (GC/MS) was used to identify the volatile compounds present, and the antioxidant capacity of the EOs was determined by antioxidant capacity (AC-DPPH) and the Trolox equivalent antioxidant (TEAC) assay. For E. florida, limonene (11.98%), spathulenol (10.94%) and α-pinene (5.21%) were identified as the main compounds of the EO extracted from sample A, while sample B comprised selina-3,11-dien-6α-ol (12.03%), eremoligenol (11.0%) and γ-elemene (10.70%). This difference in chemical composition impacted the antioxidant activity of the EOs between the studied samples, especially in sample B of E. florida. This study is the first to report on the antioxidant activity of Eugenia florida DC. essential oils.


Asunto(s)
Antioxidantes/farmacología , Eugenia/química , Eugenia/clasificación , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antioxidantes/química
8.
Molecules ; 26(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072598

RESUMEN

Essential oils (EOs) were extracted from Eugenia patrisii, E. punicifolia, and Myrcia tomentosa, specimens A and B, using hydrodistillation. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the volatile constituents present, and the antioxidant capacity of EOs was determined using diphenylpicryl-hydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays. For E. patrisii, germacrene D (20.03%), bicyclogermacrene (11.82%), and (E)-caryophyllene (11.04%) were identified as the major constituents of the EOs extracted from specimen A, whereas specimen B primarily comprised γ-elemene (25.89%), germacrene B (8.11%), and (E)-caryophyllene (10.76%). The EOs of E. punicifolia specimen A contained ß-Elemene (25.12%), (E)-caryophyllene (13.11%), and bicyclogermacrene (9.88%), while specimen B was composed of (E)-caryophyllene (11.47%), bicyclogermacrene (5.86%), ß-pinene (5.86%), and γ-muurolene (5.55%). The specimen A of M. tomentosa was characterized by γ-elemene (12.52%), germacrene D (11.45%), and (E)-caryophyllene (10.22%), while specimen B contained spathulenol (40.70%), α-zingiberene (9.58%), and γ-elemene (6.89%). Additionally, the chemical composition of the EOs was qualitatively and quantitatively affected by the collection period. Furthermore, the EOs of the studied specimens, especially specimen A of E. punicifolia, showed a greater antioxidant activity in DPPH rather than TEAC, as represented by a significantly high inhibition percentage (408.0%).


Asunto(s)
Antioxidantes/farmacología , Eugenia/metabolismo , Myrtaceae/metabolismo , Aceites Volátiles/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Antioxidantes/química , Compuestos de Bifenilo/química , Técnicas de Química Analítica/métodos , Cromanos/química , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química , Picratos/química , Sesquiterpenos Policíclicos/análisis , Sesquiterpenos/análisis , Sesquiterpenos de Germacrano/análisis
9.
Molecules ; 25(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059439

RESUMEN

The essential oil (EO) of plants of the Myrtaceae family has diverse chemical composition and several applications. However, data on the oil yield, its composition, and its complete chemistry are still unavailable for some species belonging to this family, such as Myrcia eximia DC. In this study, the chemical compositions of the EOs of Myrcia eximia were evaluated by using gas chromatography (GC) alone and gas chromatography coupled with mass spectrometry (GC-MS). Samples for both evaluations were collected from the city of Magalhães Barata, State of Pará, Brazil, in 2017 and 2018. For the plant material collected in 2017, EO was obtained by hydrodistillation (HD) only, while, for the material collected in 2018, EO was obtained by hydrodistillation and steam distillation (SD), in order to evaluate the differences in chemical composition and mass yield of the EO. The yields of (E)-caryophyllene were 15.71% and 20.0% for the samples collected by HD in 2017 and 2018, respectively, while the yield was 15.0% for the sample collected by SD in 2018. Hexanal was found to be the major constituent in the EO obtained by HD, with yield of up to 26.09%. The oil yields reached 0.08% by using SD, and 0.01% and 0.36% for the samples collected in 2017 and 2018, respectively, using HD. The results of this study provide new information about the mass yield and chemical composition of Myrcia eximia DC, and they can add value and income to traditional populations, as well as facilitate the preservation of this species.


Asunto(s)
Antioxidantes/química , Myrtaceae/química , Aceites Volátiles/química , Extractos Vegetales/química , Brasil , Cromatografía de Gases y Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA